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ABSTRACT 
There have been many investigations on the combinatorial structures and invariants over the group actions 

on the subsets of its elements. Automorphism groups from Graphs containing the cyclic and dihedral groups, 

Cn and Dn respectively have been constructed using Schur’s Algorithm. In this paper, we seek to extend the 

work to graphs whose automorphism groups contain the Alternating group An. We plan to construct the graphs 

whose automorphism groups contain the Alternating group An. To construct these graphs, we will engage 

Schur’s algorithm. We will first consider cases for 𝓃 = 3, 4, 𝐴𝑛𝑑 5, which will in turn help us make 

generalizations for any value of 𝓃, the degree of the group in study. The process will involve, establishing 

the transitivity of the Alternating group An first, finding the adjacency matrices and then constructing the said 

graphs. We then determine a formula for calculating the number of graphs whose automorphism groups 

contain the Alternating group An. Through this study we have yielded important concepts and results in the 

field of group theory. We present the results of our findings from our workings as lemmas, graphs, and or 

tables where applicable. 

      

INTRODUCTION  
Here we focus on necessary definitions and theorems that are useful in the course of our project.  

Group actions of different groups have resulted in various properties. G (a group) partitions a given X (a set it acts 

upon), it resulting in subsets referred to as orbits. Overtime, the orbits’ numbers have been counted significantly 

using the Cauchy- Frobenius Lemma; 

 

| OrbG(x) |= |G: StabG(x) |. 

 

A Mathematician by the name Schur came up with an algorithm we may use to determine the graphs whose groups 

of automorphism contain a transitive group G. It is this algorithm we intend to review and employ in our project.  

 

Definition 1: In Sn, we may form a group of order 
𝑛!

2
  known as the alternating group from the set of all 

permutations that are even. 
 
Definition 2: 𝐺 (A group ) acts on 𝑋(a set ) transitively if there’s only one orbit on 𝑋. Equivalently, it acts 
transitively if ∀ 𝑥, 𝑦 ∈ 𝑋 ∃ 𝑔 ∈ 𝐺 𝑠. 𝑡 𝑔𝑥 = 𝑦. 
 
Theorem 1: For 𝐺, a group acting on 𝑋(𝑎 𝑠𝑒𝑡) and 𝑥 ∈ 𝑋,|𝑂𝑟𝑏𝐺(𝑥)| = |𝐺: 𝑆𝑡𝑎𝑏𝐺(𝑥)|,  
 
Definition 3: Suppose 𝐺 is a transitive group on 𝑋, 𝐺𝑥the stabilizer of the point 𝑥 ∈  𝑋. We refer to orbits ∆ 0= 
{ 𝑥 }, ∆ 1, ∆ 2, …, ∆ 𝑘−1 of 𝐺𝑥   on 𝑋 as sub-orbits of 𝐺. 
 
Theorem 2: For any 𝐺, a group which acts on a finite set 𝑋, the cardinality of 𝐺- orbits is given by 

  
1

|𝐺|
∑ |𝐹𝑖𝑥 (𝑔)|𝑔∈𝐺   in 𝑋 

 
Definition 4 

Assume 𝐺 acts on 𝑋 transitively;  ∆ is orbit of 𝐺𝑥 on a set 𝑋 . 

 Let 𝑔𝓍| 𝑔 ∈ 𝐺, 𝓍 ∈ 𝑔∆then is also known as the 𝐺𝑥-orbit (or 𝐺 -sub orbit) paired with  



  
[Otieno* 6(8): August, 2019]                                                                                      ISSN 2349-4506 
  Impact Factor: 3.799 

Global Journal of Engineering Science and Research Management 

http: //  www.gjesrm.com        © Global Journal of Engineering Science and Research Management 

 [25] 

  and |||| is self-paired If . 
GxThe transitive constituent of G on forms a permutation group obtained when you restrict the elements  of 
Gxto 
 
Definition 5: (𝑔) =  |𝐹𝑖𝑥(𝑔)| ∀ 𝑔 ∈ 𝐺 , defines Character (𝜋) for the permutation representation of 
a group 𝐺 on a set 𝑋. 
 
Theorem 3: Consider definition 5, cardinality of self-paired sub-orbits of  𝐺 is calculated as follows: 

  𝑛𝜋 = 
1

|𝐺 |
 ∑ 𝜋(𝑔2)𝑔∈𝐺 , 𝑔 ∈ 𝐺.     [5]           

 
Definition 6: An n x n matrix gained from permuting the columns of an n x n identity matrix 𝐼𝑛 is referred to as 
a permutation matrix. 
 
Definition 7: Suppose V is a set of points known as vertices while E is set of vertices in twos not in any definite 
order (edges). A diagram with the sets V and E is called a graph denoted 𝒢(V, E) or 
sometimes 𝒢(given no uncertainty on 𝑉 and or 𝐸)   . 
 
Definition 8: Suppose 𝒢  is a graph. A permutation 𝛼 of the vertex set of 𝒢, 𝒱(𝒢) is an automorphism of 𝒢 if ∀ 
𝓊,𝓋 ∈  𝒱(𝒢); 
{𝓊,𝓋} ∈  𝐸(𝒢) iff {𝛼(𝓊), 𝛼(𝓋)} ∈  𝐸(𝒢) 
 
Definition 9: Automorphism group of 𝒢 denoted Aut (𝒢) is all automorphisms’ set in graph 𝒢, considering the 
compositions (of functions). Ideally, it forms a sub-group of Sn on 𝒱(𝒢). 
 
Definition 10: Given 𝒢  as a graph with n vertices labeled 1 up to n, an adjacency matrix 𝐴(𝒢) is the matrix 

defined by 𝐴(𝒢) = (𝑎𝑖𝑗), 𝑖, 𝑗 = 1, 2, 3, … , 𝑛 s.t;  

𝑎𝑖𝑗 = {
1;       𝑖𝑓 ∃ 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗
0;        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                              

 

 
Definition 11: An n x n matrix whose entries is +1 or -1 and with mutually orthogonal rows is a Hadamard matrix. 
 

MATERIALS AND METHODS 
Literature Review 

“Sabidussi [12]”, found that for connected graphs their products is also connected and for a disconnected graph, 

the product thereof with any graph is disconnected while studying graph products. “Bouwer [3]” shows that if 𝐺 

is any given permutation group that’s finite then exists infinitely several undirected and directed graphs which 

aren’t isomorphic and whose groups of automorphisms has 𝐺 as it’s sub direct component.  

 

A classification of all groups of permutations G having a sub orbit ∆ length 4 where we have that Gx ≅ A4 or Gx 

≅ S4 is faithful was done by Quirin, [11]. Leon [9] describes an algorithm for computing the automorphism group 

of a Hadamard matrix. He shows how to modify the algorithm for determining the equivalence of any two 

Hadamard matrices.  

 

The algorithm yields the order of the automorphism group, the orbits of the automorphism groups on the rows 

and columns of the matrix and a set of permutations generating the automorphism group. Servatius, [13] on his 

study of graph groups, improves on a result by other Mathematicians who had looked into graph algebras with a 

finding that two graph algebras are isomorphic if and only if their graphs are isomorphic. 

 

Babai et al., [2] built a framework useful for studying the minimum number of edge orbits and showed that a 

bounded total number of edge-orbits are admitted as a representation of large classes of groups. In this case, if the 

group of automorphisms of X is isomorphic to G then a graph X is said to represent the group 𝐺. 
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Cameron, [6] does a survey on finite graphs’ automorphisms, especially the symmetry of the typical graphs. He 

dealt mainly with identifying automorphism groups as either abstract or permutation groups. He comes up a 

number of key findings among them being that a graph and its complement have the same automorphism group. 

He further discusses a finding by Frucht, [8] that all groups are also groups’ automorphisms of a graph. 

 

Chao, [7] used an algorithm developed from Schur’s theorem to determine the graphs whose automorphism groups 

contain transitive groups. Olum, [10] used the concept to determine a formula for finding the tally of graphs whose 

automorphism groups contain given finite cyclic and dihedral groups. We expand this to alternating groups. 

 

Schur’s Algorithm Reflection 
Schur’s algorithm is constituted as below; 

i. Consider a transitive permutation group G acting on n elements say {1, 2, 3… n} and G1 the stabilizer 

of 1, then the orbits of G1 are given as; 

∆ 1= { 1 }, ∆ 2, ∆ 3, …, ∆ 𝑘. 

ii. Associate each ∆ 𝑚 with an n x n matrix as 

𝐵(∆ 𝑚) = (𝑏𝑖𝑗), 𝑖, 𝑗 = 1, 2, 3, … , 𝑛 s.t; 

𝑏𝑖𝑗 = {
1;       𝑖𝑓 ∃ 𝑎 𝑔 ∈ 𝐺 𝑎𝑛𝑑 𝑥 ∈ ∆ 𝑚 𝑤ℎ𝑒𝑟𝑒 𝑔 1 = 𝑗 𝑎𝑛𝑑 𝑔𝑥 = 𝑖
0;      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                

 

iii. 𝐵(∆ 𝑚) Is a symmetric matrix iff ∆ 𝑚is self-paired. The Identity matrix, 𝐼𝑛 is clearly observed as 𝐵(∆ 1), 
hence we only have to find 𝐵(∆ 𝑖) for 𝑖 = 2, 3, … , 𝑘.  

iv. Consider each 𝐵(∆ 𝑖) for 𝑖 = 2, 3, … , 𝑘 separately. If 𝐵(∆ 𝑖) is a symmetric matrix, a graph 𝑋𝑖  can be 

constructed whose adjacency matrix is given by 𝐴(𝑋𝑖) =  𝐵(∆ 𝑖). 
v. We ignore 𝐵(∆ 𝑖) for a moment if asymmetric. 

vi. Now, proceed to sum 𝐵(∆ 𝑖) + 𝐵(∆ 𝑗), 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 2, 3, … , 𝑘 .  

vii. Construct the graph for the sum if symmetric and ignore briefly if asymmetric. 

viii. We then repeat the process of addition to find all the possible sums for 3, 4… k-1 different 𝐵(∆ 𝑖) 
matrices. 

ix. We use every symmetric matrix from the results as adjacency matrices to construct respective graphs. 

x. Finally, the null graphs are constructed with n vertices.  

This process gives all the automorphism groups from Graphs containing the transitive group G 

 

RESULTS AND DISCUSSION 
Transitivity of the alternating, An group 

Let 𝒢 be an alternating group An acting on a set 𝑋 = {1, 2, 3, … , n} . 

Given ℊ ∈ 𝒢 and  𝓍 ∈ 𝑋 , each element 𝓍 ∈ 𝑋 is fixed by exactly  
| 𝒢 | 

𝑛
= 

(𝑛−1)!

2
 . 

⟹ | StabG 𝓍 | = 
(𝑛−1)!

2
  ∀  𝓍 ∈ 𝒳,    

 ⟹∑ | StabG 𝓍 |𝓍∈𝑋 = 
𝑛!

2
.   

| 𝒢 |= 
𝑛!

2
  , since 𝒢 is an alternating group of degree n. 

⟹ | orbG  𝓍 | =  1.   

⟹ 𝒢 acts transitively 𝑋.  

 

Formulae: 

Lemma 1: 

Suppose 𝒢 is the alternating group of degree n, the number of regular graphs whose groups of automorphisms 

contain 𝒢 is 2; i.e  

N (𝒢) = 2                                                            (1)    

Proof 

In general, the Stabilizer of 1 is given by: 

𝒢1 = { 1, (234), (235),…….., (n-2 n n-1), … , (n-3 n)(n-2 n-1)} such that ; 
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| 𝒢1 | = 
(𝑛−1)!

2
   

For 𝑛 = 3, The orbits of 𝒢1 are:  ∆1 = { 1 } ,  ∆2 = { 2 } ,  ∆3 = { 3 } 
Hence, Using Schur’s algorithm, we have that;  

B (∆2) + B (∆3) =  (
0 1 1
1 0 1
1 1 0

) 

Setting A (𝑋1) = B (∆1) and A (𝑋2) = B (∆2) + B (∆3) as adjacency matrices for the graphs 𝑋1 and  𝑋2 respectively. 

A (𝑋1) = B (∆1) = (
1 0 0
0 1 0
0 0 1

) 

A (𝑋2) = B (∆2) + B (∆3) = (
0 1 1
1 0 1
1 1 0

) 

Two graphs may be constructed with 𝑋1 and 𝑋2 being a null graph and a complete graph respectively of 3 vertices. 

 

Figure: 

  
Figure 1 (a) 𝑿𝟏 Figure 1 (b) 𝑿𝟐 

 

For 𝑛 > 3, The orbits of 𝒢1 are ∆1 = { 1 } ,   ∆2 = { 2, 3, 4, … , 𝑛}  
Hence, Using Schur’s algorithm, we establish B (∆2),   as below;  

 

B (∆2) = 

(

 
 
 
 
 
 
 

0 1 1 1………1
1 0 1 1………1
1 1 0 1………1
1 1 1 0………1
…………………
…………………
…………………
…………………
1 1 1 1……0 1
1 1 1 1………0)

 
 
 
 
 
 
 

 

 

Setting A (𝑋1) = B (∆1) and A (𝑋2) = B (∆2) as adjacency matrices for the graphs 𝑋1 and  𝑋2 respectively; 
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A (𝑋1) = B (∆1) =  

(

 
 
 
 
 
 
 

1 0 0 0………0
0 1 0 0………0
0 0 1 0………0
0 0 0 1………0
…………………
…………………
…………………
…………………
0 0 0 0……1 0
0 0 0 0………1)

 
 
 
 
 
 
 

 

 

A (𝑋2) = B (∆2) =  

(

 
 
 
 
 
 
 

0 1 1 1………1
1 0 1 1………1
1 1 0 1………1
1 1 1 0………1
…………………
…………………
…………………
…………………
1 1 1 1……0 1
1 1 1 1………0)

 
 
 
 
 
 
 

 

 

Two graphs may be constructed with 𝑋1 and 𝑋2 being a null graph and a complete graph respectively of n vertices. 

                                                                                                                                           ∎ 

Alternative Proof for 𝒏 > 𝟑 

In general, the Stabilizer of 1 is given by: 

𝒢1 = { 1, (234), (235),…….., (n-2 n n-1), … , (n-3 n)(n-2 n-1)} such that ; 

| 𝒢1 | = 
(𝑛−1)!

2
   

For 𝑛 > 3, the orbits of 𝒢1 are ∆1 = { 1 } ,   ∆2 = { 2, 3, 4, … , 𝑛}  
⟹ There are 2 orbits for the stabilizer of 1. 

Clearly, the 2 orbits of 𝒢1are self-paired by definition 4. 

This implies that the matrices associated with the sub-orbits of 𝒢 are symmetric. 

But the number of graphs whose groups of automorphisms contain 𝒢 is equal to the total number of symmetric 

matrices by Schur’s algorithm, then; 

The number of graphs whose groups of automorphisms contain 𝒢 = 2. 

The identity matrix yields the null graph while the other symmetric matrix yields a complete graph 

                                                                                                                                           ∎ 

Example  

Taking 𝒢 = 𝐴15, find the number of regular graphs whose groups of automorphism contains 𝒢 and construct the 

graphs. 

 

Solution 

Follows from the above lemma 1;  

The orbits of 𝐴9 are ∆1 = { 1 } ,   ∆2 = { 2, 3, 4,5,6,7,8,9,10,11,12,13,14,15} 
The 2 orbits are self- paired and hence they form symmetric matrices. 

The 2 symmetric matrices may be used to form 2 adjacency matrices for our graphs 

⟹ There are 2 graphs whose groups of automorphisms contains 𝐴15 . 
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Figure: 

  
Figure 2 (a) 𝑿𝟏 Figure 2 (b) 𝑿𝟐 

  

 

CONCLUSION 
We have employed Schur’s algorithm in this project to construct graphs whose groups of automorphisms contains 

the Alternating groups. We have as well calculated the number of graphs whose automorphism groups contains 

the Alternating group. 

 

We have shown our results as above and given examples of constructed graphs in Figure 1 & 2. The main result 

from our study has been expressed in lemma 1. Lemma 1 shows that in determining the number of graphs whose 

automorphism groups contain the Alternating group, the answer is always 2 being the null and complete graphs. 

Obviously the 2 graphs represent the Symmetric group. 
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